Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2020): 20232830, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593847

RESUMEN

The bone-eating worm Osedax is a speciose and globally distributed clade, primarily found on whale carcasses in marine environments. The earliest fossil evidence for Osedax borings was previously described in plesiosaur and sea turtle bones from the mid-Cretaceous of the United Kingdom, representing the only unequivocal pre-Oligocene occurrences. Confirming through CT scanning, we present new evidence of Osedax borings in three plesiosaur specimens and, for the first time, identify borings in two mosasaur specimens. All specimens are from the Late Cretaceous: one from the Cenomanian of the United Kingdom, two from the Campanian of the southeastern United States, and two from the Maastrichtian of Belgium. This extends the geographic range of Osedax in the Cretaceous to both sides of the northern Atlantic Ocean. The bones contain five borehole morphotypes, potentially created by different species of Osedax, with the Cenomanian specimen containing three morphotypes within a single tooth. This combined evidence of heightened species diversity by the Cenomanian and broad geographic range by the Campanian potentially indicates an earlier origin and diversification for this clade than previously hypothesized. Preservational biases indicate that Osedax was probably even more widely distributed and speciose in the Cretaceous than apparent in the fossil record.


Asunto(s)
Poliquetos , Diente , Animales , Huesos , Reptiles , Tomografía Computarizada por Rayos X , Cetáceos , Fósiles
2.
Zookeys ; 1172: 61-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538355

RESUMEN

The DNA taxonomy of six species of the annelid family Lumbrineridae collected from the Clarion-Clipperton Zone (CCZ) in the Central Pacific, an area of potential mining interest for polymetallic nodules, is presented. Lumbrinerids are an ecologically important and understudied annelid family within the deep sea, with many species still undescribed. This study aims to document the taxonomy and biodiversity of the CCZ using specimens collected from the UK-1, OMS, and NORI-D exploration contract areas and Areas of Particular Environmental Interest. Species were identified through a combination of morphological and molecular phylogenetic analysis. We present informal species descriptions associated with voucher specimens, accessible through the Natural History Museum (London) collections, to improve future taxonomic and biodiversity studies of this region. Five taxa in this study had no morphological or genetic matches within the literature and therefore are possibly new to science, but their suboptimal morphological preservation prevented the formalisation of new species. The most abundant taxon Lumbrineridescf.laubieri (NHM_0020) was compared with the holotype of Lumbrinerideslaubieri Miura, 1980 from the deep Northeast Atlantic. Currently no reliable morphological characters separating the Pacific and Atlantic specimens have been found and molecular data from the Atlantic specimens was not available.

3.
Nat Ecol Evol ; 7(9): 1388-1397, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488225

RESUMEN

Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.


Asunto(s)
Biodiversidad , Ecosistema , Carbonato de Calcio , Carbonatos
4.
Curr Biol ; 33(12): 2383-2396.e5, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37236182

RESUMEN

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.


Asunto(s)
Biodiversidad , Invertebrados , Océanos y Mares , Animales , Invertebrados/clasificación , Biología Marina , Océano Pacífico , Sedimentos Geológicos
5.
Biodivers Data J ; 11: e86921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38327336

RESUMEN

Background: We present a checklist of annelids from recent United Kingdom Seabed Resources (UKSR) expeditions (Abyssal Baseline - ABYSSLINE project) to the eastern abyssal Pacific Clarion-Clipperton Zone (CCZ) polymetallic nodule fields, based on DNA species delimitation, including imagery of voucher specimens, Darwin Core (DwC) data and links to vouchered specimen material and new GenBank sequence records. This paper includes genetic and imagery data for 129 species of annelids from 339 records and is restricted to material that is, in general, in too poor a condition to describe formally at this time, but likely contains many species new to science. We make these data available both to aid future taxonomic studies in the CCZ that will be able to link back to these genetic data and specimens and to better underpin ongoing ecological studies of potential deep-sea mining impacts using the principles of FAIR (Findable, Accessible, Interoperable, Reusuable) data and specimens that will be available for all. New information: We include genetic, imagery and all associated metadata in Darwin Core format for 129 species of annelids from the Clarion-Clipperton Zone, eastern abyssal Pacific, with 339 records.

6.
Geobiology ; 20(4): 465-478, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584309

RESUMEN

Symbioses between metazoans and microbes involved in sulfur cycling are integral to the ability of animals to thrive within deep-sea hydrothermal vent environments; the development of such interactions is regarded as a key adaptation in enabling animals to successfully colonize vents. Microbes often colonize the surfaces of vent animals and, remarkably, these associations can also be observed intricately preserved by pyrite in the fossil record of vent environments, stretching back to the lower Paleozoic (Ordovician-early Silurian). In non-vent environments, sulfur isotopes are often employed to investigate the metabolic strategies of both modern and fossil organisms, as certain metabolic pathways of microbes, notably sulfate reduction, can produce large sulfur isotope fractionations. However, the sulfur isotopes of vent fossils, both ancient and recently mineralized, have seldom been explored, and it is not known if the pyrite-preserved vent organisms might also preserve potential signatures of their metabolisms. Here, we use high-resolution secondary ion mass spectrometry (SIMS) to investigate the sulfur isotopes of pyrites from recently mineralized and Ordovician-early Silurian tubeworm fossils with associated microbial fossils. Our results demonstrate that pyrites containing microbial fossils consistently have significantly more negative δ34 S values compared with nearby non-fossiliferous pyrites, and thus represent the first indication that the presence of microbial sulfur-cycling communities active at the time of pyrite formation influenced the sulfur isotope signatures of pyrite at hydrothermal vents. The observed depletions in δ34 S are generally small in magnitude and are perhaps best explained by sulfur isotope fractionation through a combination of sulfur-cycling processes carried out by vent microbes. These results highlight the potential for using sulfur isotopes to explore biological functional relationships within fossil vent communities, and to enhance understanding of how microbial and animal life has co-evolved to colonize vents throughout geological time.


Asunto(s)
Respiraderos Hidrotermales , Microbiota , Animales , Fósiles , Azufre/metabolismo , Isótopos de Azufre/análisis
8.
Zookeys ; 1137: 33-74, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36760485

RESUMEN

This is a contribution in a series of taxonomic publications on benthic fauna of polymetallic nodule fields in the eastern abyssal Clarion-Clipperton Zone (CCZ). The material was collected during environmental surveys targeting exploration contract areas 'UK-1', 'OMS' and 'NORI-D', as well as an Area of Particular Environmental Interest, 'APEI-6'. The annelid families Amphinomidae and Euphrosinidae are investigated here. Taxonomic data are presented for six species from 41 CCZ-collected specimens as identified by a combination of morphological and genetic approaches; of the six species, three are here described as new, one species is likely to be new but in too poor condition to be formalised and the two others likely belong to known species. Description of three new species Euphrosinellageorgievae sp. nov., Euphrosinopsisahearni sp. nov., and Euphrosinopsishalli sp. nov. increases the number of formally described new annelid species from the targeted areas to 21 and CCZ-wide to 52. Molecular data suggest that four of the species reported here are known from CCZ only, but within CCZ they have a wide distribution. In contrast, the species identified as Bathychloeiacf.sibogae Horst, 1910 was found to have a wide distribution within the Pacific based on both morphological and molecular data, using comparative material from the abyssal South Pacific. Bathychloeiacf.balloniformis Böggemann, 2009 was found to be restricted to APEI-6 based on DNA data available from CCZ specimens only, but morphological data from other locations suggest potentially a wide abyssal distribution. The genus Euphrosinopsis was previously known only from Antarctic waters, and Euphrosinellageorgievae sp. nov. was recovered as a sister taxon to the Antarctic specimens of Euphrosinellacf.cirratoformis in our molecular phylogenetic analysis, strengthening the hypothesised link between the deep-sea and Antarctic benthic fauna.

9.
Zookeys ; 1113: 1-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762231

RESUMEN

There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100-5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories.

10.
Proc Biol Sci ; 288(1961): 20211769, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34666518

RESUMEN

We consider the opportunities and challenges associated with organizing a conference online, using a case study of a medium-sized (approx. 400 participants) international conference held virtually in August 2020. In addition, we present quantifiable evidence of the participants' experience using the results from an online post-conference questionnaire. Although the virtual meeting was not able to replicate the in-person experience in some aspects (e.g. less engagement between participants) the overwhelming majority of respondents found the meeting an enjoyable experience and would join similar events again. Notably, there was a strong desire for future in-person meetings to have at least some online component. Online attendance by lower-income researchers was higher compared with a past, similar-themed in-person meeting held in a high-income nation, but comparable to one held in an upper-middle-income nation. This indicates that online conferences are not a panacea for diversity and inclusivity, and that holding in-person meetings in developing economies can be at least as effective. Given that it is now relatively easy to stream contents of meetings online using low-cost methods, there are clear benefits in making all presented content accessible online, as well as organizing online networking events for those unable to attend in person.


Asunto(s)
COVID-19 , Humanos
11.
Front Microbiol ; 11: 1636, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793148

RESUMEN

The peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown. Understanding this is crucial for evaluating the sphere of influence of hydrothermal vents and managing the impacts of future human activity within these environments, as well as offering insights into the processes of metazoan adaptation to vents. In this study, we explored the evolutionary histories, microbiomes and nutritional sources of two distantly-related sponge types living at the periphery of active hydrothermal vents in two different geological settings (Cladorhiza from the E2 vent site on the East Scotia Ridge, Southern Ocean, and Spinularia from the Endeavour vent site on the Juan de Fuca Ridge, North-East Pacific) to examine their relationship to nearby venting. Our results uncovered a close sister relationship between the majority of our E2 Cladorhiza specimens and the species Cladorhiza methanophila, known to harbor and obtain nutrition from methanotrophic symbionts at cold seeps. Our microbiome analyses demonstrated that both E2 Cladorhiza and Endeavour Spinularia sp. are associated with putative chemosynthetic Gammaproteobacteria, including Thioglobaceae (present in both sponge types) and Methylomonaceae (present in Spinularia sp.). These bacteria are closely related to chemoautotrophic symbionts of bathymodiolin mussels. Both vent-peripheral sponges demonstrate carbon and nitrogen isotopic signatures consistent with contributions to nutrition from chemosynthesis. This study expands the number of known associations between metazoans and potentially chemosynthetic Gammaproteobacteria, indicating that they can be incredibly widespread and also occur away from the immediate vicinity of chemosynthetic environments in the vent-periphery, where these sponges may be adapted to benefit from dispersed vent fluids.

12.
Zookeys ; 938: 1-86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32549744

RESUMEN

Benthic environmental impact assessments and monitoring programs accompanying offshore hydrocarbon industry activities result in large collections of benthic organisms. Such collections offer great potential for systematics, biodiversity and biogeography research, but these opportunities are only rarely realised. In recent decades, the hydrocarbon industry has started exploration activities in offshore waters off the Falkland Islands. A large collection of ca. 25,000 polychaete (Annelida) specimens, representing some 233 morphological species was processed at the Natural History Museum, London. Taxonomic assessment led to recognition of many polychaete species that are new to science. The existing taxonomic literature for the region is outdated and many species in existing literature are likely misidentifications. Initially, an online taxonomic guide (http://falklands.myspecies.info) was created, to provide a single taxonomic source for 191 polychaete species to standardise identification across different environmental contractors working in Falkland Islands. Here, this effort is continued to make data available for 18,015 specimens through publication of raw biodiversity data, checklist with links to online taxonomic information and formal descriptions of five new species. New species were chosen across different families to highlight the taxonomic novelty of this area: Apistobranchus jasoni Neal & Paterson, sp. nov. (Apistobranchidae), Leitoscoloplos olei Neal & Paterson, sp. nov. (Orbiniidae), Prosphaerosyllis modinouae Neal & Paterson, sp. nov. (Syllidae) and Aphelochaeta falklandica Paterson & Neal, sp. nov., and Dodecaceria saeria Paterson & Neal, sp. nov. (both Cirratulidae). The potential of the Falkland Islands material to provide up to date informationfor known species described in the literature is also highlighted by publishing images and redescription of Harmothoe anderssoni Bergström, 1916 and Aphelochaeta longisetosa (Hartmann-Schröder, 1965). Biodiversity and abundance data are made available through a DarwinCore database, including material collected from 83 stations at Sea Lion developmental oil field in North Falklands Basin and voucher specimens' data collected from exploratory oil wells in East Falklands Basin.

13.
R Soc Open Sci ; 6(11): 191501, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31827872

RESUMEN

Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375-1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13C and δ 15N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.

14.
Zookeys ; 883: 1-82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31719773

RESUMEN

We present DNA taxonomy of abyssal polychaete worms from the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruises 'AB01' and 'AB02' to the UK Seabed Resources Ltd (UKSRL) polymetallic nodule exploration contract area 'UK-1', the Ocean Mineral Singapore exploration contract area 'OMS-1' and an Area of Particular Environmental Interest, 'APEI-6'. This is the fourth paper in a series to provide regional taxonomic data with previous papers reporting on Cnidaria, Echinodermata and Mollusca. Taxonomic data are presented for 23 species from 85 records within four polychaete families: Capitellidae, Opheliidae, Scalibregmatidae and Travisiidae, identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. Two taxa (genetically separated from one another) morphologically matched the same known cosmopolitan species, Ophelina abranchiata that has a type locality in a different ocean basin and depth from where no genetic data was available. These two species were assigned the open nomenclature 'cf.' as a precautionary approach in taxon assignments to avoid over-estimating species ranges. Twelve (12) taxa are here described as new species, Ammotrypanella keenani sp. nov., Ammotrypanella kersteni sp. nov., Ophelina curli sp. nov., Ophelina ganae sp. nov., Ophelina juhazi sp. nov., Ophelina martinezarbizui sp. nov., Ophelina meyerae sp. nov., Ophelina nunnallyi sp. nov., Oligobregma brasierae sp. nov., Oligobregma tani sp. nov., Oligobregma whaleyi sp. nov. and Travisia zieglerae sp. nov. For the remaining nine taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The CCZ is a region undergoing intense exploration for potential deep-sea mineral extraction from polymetallic nodules. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.

15.
Mol Ecol ; 27(23): 4657-4679, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30378207

RESUMEN

The abyssal demosponge Plenaster craigi inhabits the Clarion-Clipperton Zone (CCZ) in the northeast Pacific, a region with abundant seafloor polymetallic nodules with potential mining interest. Since P. craigi is a very abundant encrusting sponge on nodules, understanding its genetic diversity and connectivity could provide important insights into extinction risks and design of marine protected areas. Our main aim was to assess the effectiveness of the Area of Particular Environmental Interest 6 (APEI-6) as a potential genetic reservoir for three adjacent mining exploration contract areas (UK-1A, UK-1B and OMS-1A). As in many other sponges, COI showed extremely low variability even for samples ~900 km apart. Conversely, the 168 individuals of P. craigi, genotyped for 11 microsatellite markers, provided strong genetic structure at large geographical scales not explained by isolation by distance (IBD). Interestingly, we detected molecular affinities between samples from APEI-6 and UK-1A, despite being separated ~800 km. Although our migration analysis inferred very little progeny dispersal of individuals between areas, the major differentiation of OMS-1A from the other areas might be explained by the occurrence of predominantly northeasterly transport predicted by the HYCOM hydrodynamic model. Our study suggests that although APEI-6 does serve a conservation role, with species connectivity to the exploration areas, it is on its own inadequate as a propagule source for P. craigi for the entire eastern portion of the CCZ. Our new data suggest that an APEI located to the east and/or the south of the UK-1, OMS-1, BGR, TOML and NORI areas would be highly valuable.


Asunto(s)
Distribución Animal , Conservación de los Recursos Naturales , Genética de Población , Poríferos/genética , Animales , ADN Mitocondrial/genética , Genotipo , Repeticiones de Microsatélite , Minería , Océano Pacífico , Movimientos del Agua
16.
Proc Biol Sci ; 285(1891)2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30429307

RESUMEN

Microorganisms are the chief primary producers within present-day deep-sea hydrothermal vent ecosystems, and play a fundamental role in shaping the ecology of these environments. However, very little is known about the microbes that occurred within, and structured, ancient vent communities. The evolutionary history, diversity and the nature of interactions between ancient vent microorganisms and hydrothermal vent animals are largely undetermined. The oldest known hydrothermal vent community that includes metazoans is preserved within the Ordovician to early Silurian Yaman Kasy massive sulfide deposit, Ural Mountains, Russia. This deposit contains two types of tube fossil attributed to annelid worms. A re-examination of these fossils using a range of microscopy, chemical analysis and nano-tomography techniques reveals the preservation of filamentous microorganisms intimately associated with the tubes. The microfossils bear a strong resemblance to modern hydrothermal vent microbial filaments, including those preserved within the mineralized tubes of the extant vent polychaete genus Alvinella The Yaman Kasy fossil filaments represent the oldest animal-microbial associations preserved within an ancient hydrothermal vent environment. They allude to a diverse microbial community, and also demonstrate that remarkable fine-scale microbial preservation can also be observed in ancient vent deposits, suggesting the possible existence of similar exceptionally preserved microfossils in even older vent environments.


Asunto(s)
Archaea/fisiología , Fósiles , Poliquetos/microbiología , Animales , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Respiraderos Hidrotermales/microbiología , Microbiota/fisiología
17.
Elife ; 72018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479272

RESUMEN

Ensuring that the wealth of resources contained in our oceans are managed and developed in a sustainable manner is a priority for the emerging 'blue economy'. However, modern ecosystem-based management approaches do not translate well to regions where we know almost nothing about the individual species found in the ecosystem. Here, we propose a new taxon-focused approach to deep-sea conservation that includes regulatory oversight to set targets for the delivery of taxonomic data. For example, a five-year plan to deliver taxonomic and genomic knowledge on a thousand species in regions of the ocean earmarked for industrial activity is an achievable target. High-throughput, integrative taxonomy can, therefore, provide the data that is needed to monitor various ecosystem services (such as the natural history, connectivity, value and function of species) and to help break the regulatory deadlock of high-seas conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Energéticos/métodos , Ecosistema , Metagenómica/métodos , Océanos y Mares
18.
Sci Rep ; 8(1): 12103, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108286

RESUMEN

Xenophyophores, giant foraminifera, are distinctive members of the deep-sea megafauna that accumulate large masses of waste material ('stercomare') within their agglutinated tests, and organise their cells as branching strands enclosed within an organic tube (the 'granellare' system). Using non-destructive, three-dimensional micro-CT imaging we explored these structures in three species from the abyssal eastern Pacific Clarion-Clipperton Zone (CCZ). In Psammina spp., the low-density stercomare occupied much of the test interior, while high-density granellare strands branched throughout the structure. In Galatheammina sp. the test comprised a mixture of stercomare and test particles, with the granellare forming a web-like system of filaments. The granellare occupied 2.8-5.1%, the stercomare 72.4-82.4%, and test particles 14.7-22.5%, of the 'body' volume in the two Psammina species. The corresponding proportions in Galatheammina sp. were 1.7% (granellare), 39.5% (stercomare) and 58.8% (test particles). These data provide a potential basis for estimating the contribution of xenophyophores to seafloor biomass in areas like the CCZ where they dominate the megafauna. As in most xenophyophore species, the granellare hosted huge numbers of tiny barite crystals. We speculate that these help to support the extensive granellare system, as well as reducing the cell volume and lightening the metabolic burden required to maintain it.


Asunto(s)
Organismos Acuáticos/citología , Biodiversidad , Foraminíferos/citología , Organismos Acuáticos/ultraestructura , Foraminíferos/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Océano Pacífico , Microtomografía por Rayos X
19.
Sci Rep ; 8(1): 4810, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556042

RESUMEN

The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.


Asunto(s)
Anélidos/clasificación , Anélidos/genética , Ecosistema , Genética de Población , Dinámica Poblacional , Animales , Regiones Antárticas , Regiones Árticas , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Mar Biodivers ; 48(1): 621-630, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31007772

RESUMEN

The abyssal demosponge Plenaster craigi is endemic to the Clarion - Clipperton Zone (CCZ) in the NE Pacific, a region with abundant seafloor polymetallic nodules and of potential interest for mining. Plenaster craigi encrusts on these nodules and is an abundant component of the ecosystem. To assess the impact of mining operations, it is crucial to understand the genetics of this species, because its genetic diversity and connectivity across the area may be representative of other nodule-encrusting invertebrate epifauna. Here we describe and characterize 14 polymorphic microsatellite markers from this keystone species using Illumina MiSeq, tested for 75 individuals from three different areas across the CCZ, including an Area of Particular Environmental Interest (APEI-6) and two areas within the adjacent UK1 mining exploration area. The number of alleles per locus ranged from 3 to 30 (13.33 average alleles for all loci across areas). Observed and expected heterozygosity ranged from 0.909-0.048 and from 0.954-0.255, respectively. Several loci displayed significant deviation from the Hardy-Weinberg equilibrium, which appears to be common in other sponge studies. The microsatellite loci described here will be used to assess the genetic structure and connectivity on populations of the sponge across the CCZ, which will be invaluable for monitoring the impact of mining operations on its habitat. Also, we provide the annotated mitochondrial genome of P. craigi, compare its arrangement with other closely related species, and discuss the phylogenetic framework for the sponge after Maximum Likelihood and Bayesian Inference analyses using nucleotide and amino acid sequences data sets separately.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...